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We obtain the field equations of Einstein for spatially homogeneous spaces as the Euler-Lagrange 
equations of a variational problem. We write these equations in Hamiltonian form and regularize them. 
In this way, we obtain a class of solutions without rotations. We derive, in particular, the Lagrangian 
function for the rotating model with the Ss group first computed by Godel. We suggest that the corre- 
sponding Hamiltonian equations can be regularized. 

1. INTRODUCTION 

It is the main objective of some cosmologists nowa- 
days to treat the following outstanding problem of the 
relativistic cosmology : Consider the line element 

d.9 = dt2 + A(o.9)' + B ( c ~ ' ) ~  + .C(w3)' 

+ 2 0 ~ 2 ~ 3 ,  (1.1) 

where wl, m2, and w3 are the invariant differential 
forms of the group S3 satisfying the relations 

d d  = -w' A w3, dw' -w3 A wl, 

dw3 = --LO' A 0.9, (1 .2) 

and A ,  B, C, and D are functions of t  only. We find the 
solution in form (1.1) to Einstein's field equations with 
dust such that the rotation and the expansion of the 

matter are different from zero. This is interesting not 
because the astronomers had discovered the rotation 
of the universe, but it is interesting from a theoretical 
point of view. This model probably would be the 
simplest world model with finite space part and with 
the most general motion of the "Weltsubstrat," that is, 
with nonvanishing translation, rotation, expansion, 
and shear. 

We had this problem in mind when developing this 
paper, the structure of which is as follows: Using an 
idea of Weyl, we obtain Einstein's field equations for 
spatially homogeneous spaces as the Euler-Lagrange 
equations of a variational problem. More precisely, 
we obtain the vacuum field equations for all the groups 
and the field equations with incoherent matter for 
Class I groups only. We call Class I the Bianchi Type 
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I, 11, VIII, and IX groups, characterized by 

d d  = 0, do' = 0, dw3 = 0, (1.3) 

d d  = - d A  03, dw' = 0, dw3 = 0, (1 -4) 

(1.5) 

(1.6) 

d o l  = W' A w3, dw' = -w3 A 09, dw3 = -1.0~ A 09, 

d d  = -CO' A m3, do2 = -w3 A 02, 
dw3 = -wl A a'. 

Our reasons for this should be clear later. 
We apply the general theory to the line element 

ds' = dt' - ( A d ) '  - (Bw')' - (Bw,)' (1.7) 

with each of the groups (1.3)-(1.6). We write the 
Euler-Lagrange equations in Hamiltonian form. We 
regularize these equations; that is, we introduce a new 
variable T by a suitable transformation on t such that 
these equations transform into an analytic system. 
This system is then easily solved by a computer, or 
one can think of the solution developed into con- 
vergent power series with respect to the regularizing 
parameter T. As a second application, we derive the 
Lagrangian function for (1.1) with (1.2) first given by 
Gode1.l It is obvious that there are several ways to 
regularize the corresponding canonical equations; 
therefore, we can say that the problem of the rotating 
universe can be solved by regularization, in the same 
sense as Sundman solved the 3-body problem of the 
celestial mechanics. We do not give here, however, any 
explicit regularizing transformation, since there might 
be a "much better" one than the obvious one. 

In closing, we refer to a remarkable talk delivered by 
Misner at the Cincinnati Conference.' Misner special- 
izes the Arnowitt, Deser, and Misner formalism to 
type IX spaces in order to obtain the Einstein equa- 
tions for 

ds' = dt' - ( A d ) '  - (Bw')' - (CW,)'. 

He writes the field equations in Hamiltonian form, 
introduces a new parameter instead of time, and dis- 
cusses the singularities of the model. Our approach 
is similar. It is based on ideas of WeyP and Gode1,l 
designed for spatially homogeneous spaces, and we 
think it is simpler. Concerning the introduction of a 
new parameter instead of the time, we follow Sund- 
man,4 as explained. 

2. PRELIMINARIES 

We consider the Lie group M4 = R x G , ,  where 
R is the real line and G,  is a 3-dimensional Lie group. 

Denoting by t the coordinate on R,  we can introduce 
the vector fields 

(2.1) 

ma = dt, ma, a = 1,2, 3, (2.2) 

a 
at 

X, = -, Xu, a = 1,2,3,  

and the 1-forms 

such that 
w"(Xp) = S E D ,  U, * - 0, 1, 2, 3, (2.3) 

and X, and ma are invariant under the left translations 
of G, . One knows that the left-invariant vector fields 
of M4 form a Lie algebra; that is, 

[Xo, Xal = 0, a = 1,2 ,3 ,  [Xu, x b l  = CfabXf 
(2.4) 

dmo = 0, do" - $ C a 6 c ~ b  A IB', (2.5) 
or 

where Cube are the components of the structure con- 
stant tensor of the Lie algebra of G, with respect to the 
base (2.1) and (2.2). The C's satisfy 

cab, = -Ca& (2.6) 
and the Jacobi identities 

CafbCf,,  + CafcCfdb + CafdCfb,  = 0. (2.7) 

We use X, and ma to span the tensor algebra over M 4 ,  
that is, we specify tensor fields by giving their com- 
ponents with respect to these bases. We introduce on 
M4 a connection by 

V,,Xp = rasyXy 3 (2.8) 
where rapY are the components of the connection with 
respect to (2.1). The curvature tensor field of the con- 
nection is given by 

R(U, V)Y = VuVvY - VvVu Y - Vcu,vl Y,  

and from that we have 

R(X, 7 X,)X, = Vx,Vx,Xs - vx,vxyxp 
- VCX,.X,$~ = Rapy6Xa 

Following the roles of the covariant differentiation, 
we compute that 

R=~,, = ry;rSsc - ra:rypc - rupacayd 
+ xyr,Ba - xary;. (2.9) 

By requiring that the torsion tensor field 

T(X ,  Y) = VXY - V,X - [X,  rJ 

"x,Xp - "xpXm - [Xa 3 XpI= 0, 

vanishes, that is, 
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we obtain the following symmetry properties for the 
1 7 7 ~ :  

rapY - rp: = cy ab 

where f is a function over M4; 
plicitly with the y's as 

(2.10) vxoxo = 0,  VxoXa = 

K:Xb 7 vx,xb = 
Using (2.10) we compute the components of the 

v,aXo = Ricci tensor field : 

where 

and 

Rpy = Rapya 
= rVp$r4; - rV4vrp: + xprw; - xVrp;. K,b = S.i)afyfb 

(2.11) 

Introducing on M4 a metric by the requirement that 

(2.12) 
that is, 

ds2 = dt2 + Yab(t)Wacob, U ,  b = 1, 2, 3, (2.13) 

M4 becomes a pseudo-Riemannian space. Equation 
(2.13) excludes the possibility of lightlike t ,  but it is at 
our disposal to choose it timelike or spacelike. The 
metric (2.13) is left invariant under the transformations 
of G, ,  but not invariant under M4. We call these 
metrics spatially homogeneous, meaning that there 
exist global 3-dimensional hypersurfaces generated by 
G, . The name also suggests that these hypersurfaces 
are spacelike. We make some remarks regarding this 
point later. 

The requirement that the metric (2.13) should be 
covariant constant with respect to the connection 
(2.8), combined with the requirement (2.10), leads to 
the following equations : 

2 g ( b a X p  7 q 
= Xag(Xp 7 xy) + x&Xy 7 Xa> - xyg(Xa 7 Xp> 

+ g(xp 7 [Xy 7 Xal) + g<XY 9 [ x a  7 Xbl) 
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we can write (2.8) ex- 

K , b x b  7 

-i.i)abXLl + rabCXo, 
(2.18) 

(2.19) 

C f l  c 
rab' = Y d bfa  + c fab  - cabf) .  (2.20) 

We now substitute (2.18) into (2.11) and find that 
the components of the Ricci tensor field are given by 

Roo = (K,f) '  + K,SK,f,  (2.21) 

(2.22) 
Rao = K,fI'f2 - K,fr,,B E K, fCgfa  - K,fCggf ,  

Rab = g v a b  - K,f.i)fb &.i)ab(Ki) R*ab, (2.23) 
where 

R*,b = '7: rg,f - rfgf Pa? (2.24) 

is the Ricci tensor field of the group space G, .  These 
expressions have been calculated by Taub5 and 
Heckmann and Schucking.6 Using the identity 

&yafyfb = (K,b)' + 2KafKfb7 (2.25) 

we can compute the Ricci scalar R,  

3R = ( K f f ) '  + +[K,BK,f + (K:)2] + &R*, (2.26) 

R* = yabR*ab (2.27) 

We consider Einstein's field equations with inco- 

where 

is the Ricci scalar of the group spaces G ,  . 

herent matter written in the form 

Rap - iRyap = -KPUaUB 7 (2.28) 

uaua = 1 (2.29) 

for the spaces (2.13), where 

u = u a x ,  = uXo + uaxa (2.30) 

p = U , C O ~  = u dt + uawa (2.31) 

are the velocity vector field of the matter and the 
corresponding 1-form, respectively. The normalization 
(2.29) chooses the t lines to be timelike. One has to 
make this choice for physical and not for mathematical 
reasons. Choosing, instead of (2.29), the no 
tion 

(2.15) 

(2*16) 

(2.17) 
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we could extend our future discussions to spacelike t 
lines. The corresponding solutions, however, would 
represent stationary world models, where the density 
of the matter is a function of the spacelike coordinate 
t only. One is not looking systematically for such 
models without having a speciaI reason. We would 
like to remark, however, that there are interesting 
special solutions for spacelike t lines in the case of the 
Bianchi Type VI11 group if we include a nonvanishing 
A term into our discussions. These solutions are given 
by the line elements 

ds2 = dt2 + (1 - k ) ( d  cos /3t + w 2  sin 
+ (1 + k)(-wl sin /3t + w2 cos Pt)' 
- (1 + 2k2)(w3)2, (2.33) 

where 
B = (  1 - 2 k 2  )", + < l k l < -  1 

2(1 + 2k2) 24 
k a real parameter, 

and 

ds2 = dt2 + +(1 + ~)(d)~  + *(I - s)(w2)' - ( w ~ ) ~ ,  
(2.34) 

where 

and 
JsJ < 1, s a real parameter, 

d d  w2 A w3, dw2 = -w3 A 09, 
dw3 = -0' A w2, (2.35) 

or in a special coordinate system 

w1 = cos x3 dxl = exlsin x3 dx2, 
w2 = -sin x3 dxl  + e"' cos x3 ax2, (2.36) 
w3 = ex1 a x 2  + ax3.  

Equations (2.33) and (2.24) are the Class I1 and 
Class 111 universes discovered by the author.' Equation 
(2.34) contains the famous Godel cosmos* as a special 
case for s = 0. The speciality of (2.33) and (2.34) is 
that they are invariant under a 4-dimensional Lie 
group containing (2.35) as an invariant subgroup. As 
a consequence of that, the density of the matter is 
constant. 

Coming back to our main line of reasoning, we list 
a few formulas for later use. The components of the 
tensor fields V,U and V,p( Y )  are 

u':~  = X,U" + rS;uy and u,:~ = X p ,  - rs,Yuy, 
(2.37) 

as one easily sees following the roles of the covariant 
differentiation. All our subsequent formulas are con- 
sequences of (2.37). The equations of geodesic motion 

and the continuity equations are 

Uzi - *yfgUfUg = 0, 

UU, - c g f a u f U g  = 0, 

(pu)' + pu(Klf) + pCggfuf = 0. 

(2.38) 

(2.39) 

(2.40) 

For later references, we write (2.29) as 

(x)2 + UfUf  = 1 .  (2.41) 

Equation (2.38) is a consequence of (2.39) and (2.40). 
The components of the tensor of rotation are 

map = %(X,up - XpuJ - & C y , p ~ , ,  (2.42) 
that is, 

cc)ab = -&cfabufy waO = -+fla. (2.43) 

3. VARIATIONAL PRINCIPLE FOR VACULTM 

Since the vacuum case already contains some essen- 
tial features of our problem, for the sake of simplicity 
we start with this case. We write the vacuum field 
equations using (2.21), (2.22), (2.23), (2.25), and (2.26) 
in the following form: 

ROO - &R = &(KtK, f  - (K,f)' - R*) = 0, (3.1) 

R,, = K,fCgf ,  - K,ICggf = 0, (3.2) 

R,b - +Rd,b = (K,b)' - (Ki)d: + (K,f)K," 
- t [K,BK,f  + (K,f)21d,b 
+ R*ab - +R*dab = 0. (3.3) 

These are Taub's equations5 written in a slightly 
different form. Weyl writes in his famous book (Ref. 
3, p. 251) while calculating the static spherically 
symmetric field for vacuum: "Wir nutzen das Wir- 
kungsprinzip zunachst nur teilweise aus , indem wir 
annehmen, dass bei der Variation die zugrunde gelegte 
Normalform des ds2 nicht zerstort wird; * * - bei sol- 
cher eingeschrankten Verwendung genugt es, das 
Wirkungsintegral fur jene Normalform zu berechnen." 
These ideas apply in our case word for word. 

The normal form for ds2 is given in our case by 
(2.13). The action integral for this normal form is 

where +R is given by (2.26) and 

The first integral in (3.4) is extended between two 
fixed values of t ,  the second one over G,  if compact, 
or over a part of it if otherwise, giving a finite constant 
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C which we normalize later. The action integral is, 
therefore, 

J = cf y*{(K,f)* + +[K,BK,f + (K,f)’]  + $R*)  d t .  

Using the identity 

and integrating by parts and normalizing c = 2, we 
have 

t z  

t l  

(3.6) 

(74). = y*Kff (3.7) 

J = L dt = y [K/K,f  - (K,f)’+ R*] dt .  (3.8) st:” Jt: * 
But varying (3.8) with respect to the y’s is precisely the 
requirement to consider variations, which leaves the 
normal form (2.13) unchanged. 

We now prove that 
6J = 0 (3.9) 

gives the six field equations (3.3) as Euler-Lagrange 
equations. The proof is a straightforward calculation. 
We assume, following Siegel,4 that our variational 
problem has a solution, and we consider a family of 
functions 

yab(a;t) ,  - l  < a < l7 (3.10) 
such that 

I/ab(O; t ,  = Y a b ( t )  (3.11) 

is the solution of our variational problem. We con- 
struct with these functions the integral 

J(E) = L[yab(u; t ) 7  pab(u; t)] dt ,  -1 < < 1. 

(3.12) 
As a consequence of our assumption, J(a)  assumes its 
extremum at u = 0 and, therefore, 

SI: 

J’la=o = d$ lano= O (3.13) 

is equivalent to (3.9). 
Carrying out our calculations, we see that 

yab(K; t i )  = const, yab(@-; 12) = bab = const, 
(3.14) 

fab (0 ;  t )  is arbitrary. (3.15) 
and that 

The formula for dJ/da reads as 

dJ 
- du  =c(y)*’[K;K,’ - (K,f)’ + R*] d t  

+ 2ry*[(KPYK,’ tl - (K,f)(K,B)’] dt 

+ ~ t z y * ( y f g ) ‘ R * f g  dt .  (3.16) 
t l  

We know that we do not have to compute (R*aJ. In 
order to facilitate the calculations, we compute the 
expressions 

- zy 1 ab (K,BK,f - K,f)’ + R*ab - +yabR*]fab dt .  
(3.21) 

We now evaluate the first integral in (3.21). Integrating 
by parts and using (3.7) and (3.14), we obtain 

S::yt[YafK,b - yab(K:)lj’ab d t  

= -ftyy*[yaf(KfB)’ - yab(K,f)* - 2yafK,BK,b 

(3.22) + 3yafKfb(K,”) - yab(K,f)2]y’ab dt .  
Substituting (3.22) into (3.21), we obtain 

- $yab[K,BK,f + (K:)’] 
+ R*ab - IR* 2 ab b l a b  dt* (3.23) 

Substituting u = 0 and using (3.13) and (3.15), we find 
that 

-y”y”“((K,b). - (KgQ)*6,b + K,b(Kg9) 
-$[KfgKgf + (Kf3’] + R* a 2 a  - IR*6 ’} = 0, (3.24) 

and a glance at (3.3) proves our assertion. The 
Lagrangian of the vacuum problem is, therefore, 

L = y*[K/Kgf  - + R*] .  (3.25) 

In order to obtain the Euler-Lagrange equations in 

Pab = aL/a’?ab (3.26) 

Hamiltonian form, we introduce 

and define the Hamiltonian function by 

H = ( a L / a j a b ) j a b  - L. (3.27) 

Since L is homogeneous of degree two in 
that the Hamiltonian function 

H = y*[KfgK,f - ( 

, we find 
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and the Euler-Lagrange equations in Hamiltonian 
form are 

pa, = aH/apa,, Pa, = - aH/aya,. (3.29) 

Since H does not depend explicitly on t ,  (3.28) has a 
constant value h for a solution of (3.29), that is, 

H = y*[Kf"Kof - - R*] = h (3.30) 

is the energy integral. A glance at (3.1) shows that 

h = 0. (3.31) 

This is the seventh field equation. Equations (3.2) are 
integrals of the other equations as Taub proves in Ref. 
5. Therefore, the Taub equations can be written as 

BJ:j*[K,BK: - (IC;)' + R*] dt = 0,  (3.32) 

K,BCfoa - KafCoQf = 0, (3.33) 

H 4 [K,BK,f - (K,f)' - R"] = 0. (3.34) 

4. VARIATIONAL PRINCIPLE FOR 
INCOHERENT MATTER 

We now consider the Einstein field equations with 
incoherent matter. Using (2.21), (2.22), (2.23), (2.25), 
and (2.26), we find that 

Roo - $R = [Kf'Ksf - (Kff)2 - R'] = -Kp(U) ' ,  

(4.1) 
Ra0 = KfgCfya - KafCgyf = - K p U U a ,  (4.2) 

R,b - $RB,b = (Kab)' - (Kff)'S,b + (Ki)K," 

- $[KfgK,f (K,f)'Id,b, 
(4-3) 

R* a 2 a  b - IR*B b - KPUaUb. 

These are the Heckmann-Schucking equations6 written 
in a slightly different form. We have, in addition, 

(u)2 + uaua = 1, (4.4) 

uua = CfgaUQUf, (4.5) 

(4.6) (pu)' + ( P U ) [ K f f  + (Cg,fuf)/(l - U,U")*I = 0. 

Our problem is now to find the Lagrangian for the 
Heckmann-Schucking equations. Examining (4.6), we 
discover that the term 

contains the vector 
cggfuf (4.7) 

c g o f  (4.8) 
obtained by contraction over two indices from the 
structureconstant tensor of G,  . The term (4.7) vanishes 
if (4.8) vanishes. It is natural, therefore, to divide the 
3-dimensional Lie groum. their Lie algebras, that is. 

into two different classes according to the vanishing or 
nonvanishing of the vector (4.8). These classes are the 
following : 

Class I: Cgoa = 0, a = 1,2,  3, (4.9) 

Class 11: Cgoa Z 0, a = 1,2,  3. (4.10) 

Class I contains the groups of the following Bianchi 
types : 

Class I: Type I ,  11, VIII, and IX. (4.1 1) 

The structure of the Class I1 algebras is given by 

[ X i  3 X2I = 0, [ X A  7 X3I = C"AXB 3 

A,  B,  * = 1, 2, (4.12) 
or, alternatively, 

2 do1 = -CClAwA A 03, dm = -C2AoA A m3, 

do3 = 0. (4.13) 
Therefore, the Class I1 algebras are given by the 
different normal forms of the 2 x 2 real matrices 
CBA with nonvanishing trace. These are9 

Class 11: Type 111, IV, V, VI, VII. (4.14) 

We write our variational principle fot. the Class I 

(4.15) 

groups only. We can integrate (4.6) in this case to 

pu = z/y* 2 0, 

where I is a constant. Writing (4.4) as 

u = (1 - Ua@, (4.16) 

we obtain from (4.15) 

and 
P = I/[y(l - ~ a ~ " ) l *  (4.17) 

p(u)2 = 1[(1 - uaua)/y]*. (4.18) 

We now claim that the Lagrangian of the Heckmann- 
Schucking equations for Class I groups is given by 

L = y*[KfQK,f - (Kff)2 + R*] - 2~Z(l - u,U")*, 
(4.19) 

and the Hamiltonian is 

H = 7*[KfQK,f - (Kff)2 - R'] + 2Kl(1 - uaua)4. 
(4.20) 

We obtain the Heckmann-Schucking equations as 

6Sf2{yt[K,BK,' - (K,f)' + R"] 

K;Cfoa = - K ( ~ / Y $ u , ,  a = 1, 2, 3, 

t l  

- 2~Z(1 - ufuf)*} dt = 0, (4.21) 

(4.22) 
H = * [K,BK,f - (K;)' - R*] 

v I '  Y + 2~Z(1 - ufuf)' = h = 0, (4.23) 
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and 
cfgaugu f 

(1 - U f U f ) * '  
u, = a = 1,2, 3, Cgga = O! . (4.24) 

To prove this assertion, we compute the derivative 
#dF/da of 

F(M) = - 2 ~ l  (1 - uaua)* dt for CI = 0. st:" 
We imagine that the functions yab(a; t )  are substituted 
for Yablt1 : 

t z  

-=  - IC1 + Y'ab dt* (4*25) 
dF da s t l ( 1  - U f U  ) 

Using our earlier results, we see that 
- ("*) [Rab - 4Ryab] - [Kl/( 1 - UfUf)*]UaUb = 0. 

(4.26) 

Dividing by -y* and using (4.17), we find that (4.26) 
is equivalent to (4.3). It follows, exactly as before, that 
the Hamiltonian function (4.20) has to be constant for 
the solutions. Dividing (4.20) by 274, using (4.18) and 
(4.1), we see that the energy constant has to be zero. 
Equations (4.22) and (4.24) 'are consistent with the 
other equations (see Ref. 6). 

5. SOME REMARKS 

Examining Eqs. (3.32)-(3.34), one sees that the 
variational principle has its full power in the vacuum 
case. One would treat the vacuum problem as a 

cal problem defined by the Lagrangian func- 

L = yi[KfgKK,f - ( K f f ) 2  + R"], (5.1) 
uce it with the help of the integrals 

KfgCfga - KafCggf = 0,  a = 1,2,  3. (5.2) 

tion is different. The Class I 
groups are preferred because (4.6) is then integrable. 
Furthermore, the PO of (4.21)-(4.23) is limited by 
(4.24) in general. We see in the last section of this 
paper that, in the case of 
ds2 = dt2 + A(d)' + B(w2)' + C ( W ~ ) ~  + ~ D C O ~ W ~ ,  

(5.3) 

(4.24) is trivial and the method retains its full power 
and simplicity. In order to obtain the general Type 
VI11 and IX models (the Type I and I1 models do not 
have rotation), one develops the above formulas for 
the line element 

ds2 = (dt + pfwf)' Yab( t )wagb,  

a,  b,  f, - * - = 1, 2, 3, (5.4) 
with 

pa = 0, a = 1,2 ,  3, (5.5) 

which replaces (4.24) as the geodesic condition. The 
expressions corresponding to (4.21)-(4.23) are natu- 
rally more involved. 

Another remark refers to the Bianchi Type I1 group 
given by 

d d  = -a2 A m3, dm2 = 0,  do3 = 0. (5.6) 

We claim that there is no rotating solution for (5.6). 
The proof is trivial. From (4.22), we obtain 

that is, 

Due to the special form of the structure constant 
tensor, it follows that 

Kfgcfg i  = 0 = K(l/)'*)Ul, 

u, = 0. (5.7) 

cfabuf cl&l = 0. (5.8) 

Zi, = 0, a = 1, 2, 3. (5.59 

Using (4.24) and (5.8), one sees that 

Since the components of the rotation tensor are given 
by 

cc),, = -&Cfabuf , Wao = -%I 2 a  

[see (2.43)], we obtain 
wab = 0, ma0 = 0, (5.10) 

as claimed. Rotating solution for Class I groups i:,, 
therefore, possible only with Bianchi Type VI11 and 
IX groups. We now go over to more serious appliczc- 
tions. 

6. A CLASS OF SOLUTIONS 

We consider the line element 

ds2 = dt2 - (Ad)' - (Bw~)' - (Bw3)' (6.1) 
with each of the four different Class I groups; that is, 
with 

or 

or 

do.9 = 0 ,  dw2 = 0, dw3 = 0 ,  (6.2) 

d co I - -  - w2 A w3, do2 = 0, dw3 = 0, (6.3) 

d d  = CO' A m3, do2 = -w3 A 02, 
do3 = -09 A UP, (6.4) 

or 
d d  = -0' A m3, dW2 =: -m3 A 02, 

du3 = -09 A o', (6.5) 

respectively. It is not known by me whether or not the 
cases with (6.3) and (6.4) are in the literature, but (6.1) 
with (6.5) has been discussed. With vacuum this is the 
Taub solution and with incoherent matter it is dis- 
cussed by Behr.lo The case (6.1) with (6.2) is fully 
integrated by Schiicking. Our aim is to compute the 
Hamiltonian function of these cases and write the field 
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equations in Hamiltonian form and regularize these 
equations, in the way that Sundman regularized the 3- 
body problem of the celestial mechanics. The idea is as 
follows : One introduces by a suitable transformation 

t = t ( ~ )  or T = T ( t ) ,  

a new independent variable T such that our field 
equations, as a system of first order ordinary differ- 
ential equations with respect to T ,  should be analytic. 
A system 

x',=f,(xJ, /c,z,***= l , 2 , * . . , n ,  

is called analytic if the functions f K  as functions of x 1  
are analytic. Having done that successfully, one con- 
siders the problem solved since everything else can be 
done by computers and by the application of the 
qualitative theory of differential equations.ll 

To demonstrate all of this by an example, we pro- 
ceed with our problem. From (4.22), it follows that 

u = 1 ,  u, = 0, a = 1 , 2 , 3 ,  (6.6) 
and Eqs. (4.24) are trivially satisfied. The Lagrangian 
and Hamiltonian functions read as 

L = -4ABB - 2AB2 + 
H = -4ABB - 2AB2 - 

and 

respectively, where the relevant 

for Eq. (6.2) 

for Eq. (6.3) 

for Eq. (6.4) 

R* = 0, 

R* = -A2/2B4, 

AB'R" - 2Kl (6.7) 

AB2R* + 2 ~ 1 ,  (6.8) 

Ricci scalars are 

(6.9) 

(6.10) 

R" = -(A2 + 4B2)/2B4, (6.1 1 )  
for Eq. (6.5) 

R* = -(A2 - 4B2)/2B4. (6.12) 

We treat the case (6.12), that is, (6.1) with (6.5). The 
other cases can be obtained by making suitable 
changes. 

The Hamiltonian function for (6.1) with (6.5) is 
given by 

H = -4ABB - 2AB2 + (A3/2B2) - 2A + 2 ~ 1 .  
(6.13) 

We write the field equations in Hamiltonian form, 
that is, we define 

(6.14) 
Solving (6.14) for A and B, we obtain 

A = (AP/4B2) - (Q/4B), B = -P/4B. (6.15) 

Substituting into (6.13), we obtain 

H = (AP2/8B2) - (PQ/4B) + (A3/2B2) 
- 2A -I- 2Kz, (6.16) 

and the field equations in Hamiltonian form are 

A = aH/ap, B = aH/aQ, P = -aH/aA, 
Q = -aH/aB. (6.17) 

The first two equations are (6.15), and the second two 
are given by 

P = -(P2/8B2) - (3A2/2B2) + 2,  
Q = (AP2/4B3) - (PQ/4B2) + A3/B3. (6.18) 

The energy integral reads as 

H E (AP2/8B2) - (PQ/4B) + (A3/2B2) 
- 2A + 2Kl = 0. (6.19) 

The form of (6.15) and (6.18) strongly suggests the 
introduction of the new variables 

x = A/B ,  y = P/B, z = Q/B,  (6.20) 
or 

A = xB, P = y B ,  Q = zB. (6.21) 

Then, the equations read as 
i B  = ~ X Y  - $z, (6.22) 

BB = - iyB,  (6.23) 

j B  = &y2 - +x2 + 2, (6.24) 

i B  = x(x2 + &y2), (6.25) 
and 

B [ ' x ~  - &YZ + -X - 2x1 + 2 ~ l  = 0. (6.26) 

Introducing a new independent variable T by 

(6.27) 

our equations become 
x' = 1x  2 y - L, 
B ' =  -1 4Y B ' 

y' = i y 2  - 2 2x 2 + 2, 

z' = x(x2 + iy), 

(6.28) 

(6.29) 

(6.30) 

(6.3 1 )  

where Eq. (6.29) is a consequence of (6.26), (6.28), 
(6.30), and (6.31). A more elegant way to do this 
would be to reverse the order of the operations. One 
should carry out the time transformation first with 
the help of a canonical transformation (see Ref. 4,  
35). It is then obvious that one retains an energy 
integral and, therefore, one can leave (6.29) aside. 
And, as a second step, one would go over to the 
ratios. 
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We want to give our method for solving the prob- We now list the equations for the other cases: 

(6.1) with (6.2), lem: We integrate the analytic system 

X I  = &y - &, yt = hy2 - gx2 + 2,  x' = ' ixy - 62, y' = Qy2, 2) = ixy2, 
z' = x(x2 + iyy"); (6.32) 

B 16~ l / [ y (2z  - xy)], A = xB, t 
we compute B from (6.26) 

B = 4d/(-&xy2 + +YZ - x3 + 4 ~ ) ;  (6.33) (6*1) with (6.3), 

x' = gxy - t z ,  y' =: Qy2 - &, 2-1 we compute A from 
4 ~ 1  (6.34) B = , A = x B ,  t =  A = xB. 

-&cy2 + gyz - x3 
The cosmic time t is computed from 

(6.1) with (6.4), 

This method solves our problem in a way similar to 
Sundman's solution of the 3-body problem of the 
celestial mechanics. 

The best way of visualizing (6.32) is to go into a 3- 
dimensional Euclidean space E, with the coordinates 

components of an analytic vector field V over E,. 
V is nowhere singular; that is, the components of V 
vanish nowhere on E, simultaneously. 

Through any point Po = (xo , y o ,  zo) of E,, one can 
draw with the help of a computer one and only one 
integral curve C of (6.32). We then find, corresponding 
to each such line, a universe following the rest of our 

B = 
-&cy2 + gyz - x3 - 4x 

X ,  y ,  and Z. The right-hand sides of (6.32) are the a curiosity, we remark that (6.42) can 
in closed form: 

arising questions, one should study Nemytskii and 
Stepanov.ll Some numerical calculations will be made 
in a later paper. As a curiosity, we compute the 
Friedmann cosmos. Assuming 

7. THE ROTA 

There is a challenging pro 

x =  1 ,  (6.36) dSs2 = dt2 + A ( w ~ ) ~  + B 

then Eqs. (6.32) reduce to 
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This problem is challenging not because the astron- 
omers discovered the rotation of the universe, but 
because (7.1) with (7.3) probably gives the simplest 
finite model where the "Weltsubstrat" has the most 
general motion, namely, translation, rotation, expan- 
sion, and shear. For the sake of definiteness, we 
restrict ourselves to (7.1) with (7.3). We see that 

and, therefore, 

0 

C 
BC - 0' 

D 
BC - D' 

- 

0 

BC - DD 
2(BC - D') 
CD - CD 

2(BC - D') 

0 

BD - B D  

BC- DD 
2(BC - 0') 

(7.4) 

(7.5) 

where a is the row and b is the column index. From 
(4.22) and (7.5), it follows that 

(B - C)b  - (A - C)D 1 
= - K 7 u 1 ,  2(BC - D') Y 

U' = 0: u3 = 0, (7.6) 

u, = 0. (7.7) 
and from (4.24), we obtain 

Therefore. 

u, = [ (1 - zr, V, 0, 01, (7.8) 

where V is a constant. One might mention that the 
only nonvanishing component of the rotation tensor 
[see (2.43)] is given by 

and the length of the vector of rotation W defined by 

W" = & p Y a O  BY 6 (7.10) 
is given by 

g(VK W )  = A($V)'. (7.11) 
We write (7.6) for later references in the following 
form : 

0 2 3  = -&V, (7.9) 

A[(B - c ) b  - ( B  - c)D] 2Klvyg, (7.12) 
where 

y = IA(BC - D"1. (7.13) 

One easily computes that 

A(BC - 0')' - A(BC - b') + R*) 
2A(BC - D2) 2A(BC - D') 

- 2Kl 1 - - . (7.14) ( :r 
The Ricci scalar of the group space is given by 

2(A2 + B2 + C') - (A + B + Cj2 + 40' 
2A(BC - D') 

R" = 

(7.15) 
There are two problems: (a) reduction of the me- 
chanical system, defined by the Lagrangian function 
(7.14), with the help of the first integral (7.12); (b) 
regularization of the reduced system. 

A. Reduction of the Mechanical System 

The reduction of a system is a standard problem in 
the mechanics, and we found its solution following 
standard methods. Therefore, we give the results only. 
Consider the functions x, y ,  z ,  and w defined by 

x = -A, y = -${B + C + [4D2 + (B - C)']&}, 
z =  -1 ,{B + C - [40' + (B - C)']*>, (7.16) 

w = arctan (B  - C/2D), 

or the inverse transformations 

A = -x, B = $(y + z )  - $(y - z )  sin w, 
C = &(y + z )  + $(y - z )  sin w, (7.17) 

D = -&(y - 2) COS W. 

We show that (7.17) reduces our system defined by 
(7.14) and (7.12). We first compute the new form of 
(7.12). One sees that 

YZ = BC - D2;  (7.18) 

therefore, xyz = -A(BC - D') and 

y+ = (xy& (7.19) 

One easily computes that 

A[(B - C ) b  - ( B  - C)] = $x(y - z)'k; 

therefore, (7.12) reads as 

(7.20) 

It does not contain w! We now compute the Lagran- 
gian function (7.14) in the new variables and find that 
it does not contain w. Using (7.18), we see that 

1 2  3 
2A BC - D2 2 x  Y 

-- A (BC - 0')' - - - --(- + I). (7.21) 
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A straightforward calculation shows that 

therefore, 

. (7.22) 
1 3  i 2x2z2v2 A (BC - D2) 

2A(BC - D2) 2 y  z x(y  - z)2 
+ - _ - - _  - -- 

Another trivial calculation shows that 

R* = - 2(x2 + Y 2  + z2)  - ( x  + Y + 2)" (7.23) 
2xyz 

From (7.14), (7.19), (7.21), (7.22), and (7.23) it then 
follows that (iff + 2; 1 p i  ~ + _ _  l i k  - L = -(xyz)$ 

2 z x  

2(x2 + y 2  + z2) - ( x  + y + z y  - 
2xyz 

+ 
(7.24) 

The Lagrangian function has been first computed by 
Gode1.l (Also, see Ref. 12.) Defining 

(7.25) aL aL 
a i  a3 a i  p = - ,  q = - ,  r = -  

we compute the Hamiltonian function 

- (XP + Y 4  + zrY 

+ 2(x2 + y2 + 2) - ( x  + Y + 4 2 1  

The field equations are 

, (7.27) 
aH . aH , q = - -  , r = - -  aH 

P = - -  ax aY aZ 
where H is given by (7.26). 

follows: Find a solution of (7.27) for which 
The method for finding a rotating universe is as 

H = O .  (7.28) 

Then we obtain w from (7.20) by integration. Com- 
pute the components of the metric from (7.17). Ex- 
amining the form of (7.17), one sees that seeking a 

solution via the ansatz 
0 

0 c cos a b - c sin a 

where a ,  b ,  c, and a are unknown functions of time, 
is a naive but well-founded approach. We now con- 
sider our second problem. 

B. Regularization of the Reduced System 

We formulate this problem as follows: Introduce a 
new independent variable by a suitable transformation 
of t such that (7.27) is transformed into an anaIytic 
system. Examining (7.26), one had the strong impres- 
sion that the problem of the rotating universe can be 
solved by regularization. One sees several ways and 
one has several suggestions; the strongest one is 
probably to study Siegel's bookU4 

Note added inproof: I am indebted to G. F. R. Ellis 
for bringing to my attention the following two papers, 

G. F. R. Ellis and M. A. H. MacCallum, Commun. 

S .  Hawking, Monthly Notices Roy. Astron. SOC. 

and for the remark that there are two additional 
groups of Class I, namely,a special Type VI and a 
special Type VI1 group characterized by 

and 

Math. Phys. 12, 108 (1969), 

142, 129 (1969), 

d d  = m3 A 0.9, 

d d  = 09 A w3, 

dw2 = 02 A m3, 

do9 = co3 A 09, 

dw3 = 0 

dco3 = 0, 

respectively. 
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